Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559265

RESUMO

The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible platform that bridges the gap between genomics and biotechnological solutions.

2.
Science ; 383(6689): 1344-1349, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513017

RESUMO

Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125-base pair DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon introduction to cells. We describe an approach that efficiently forms single-copy HACs. It employs a ~750-kilobase construct that is sufficiently large to house the distinct chromatin types present at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful chromosome engineering in the context of metazoan cells.


Assuntos
Centrômero , Cromossomos Artificiais Humanos , Epigênese Genética , Humanos , Centrômero/genética , Centrômero/metabolismo , Cromatina/metabolismo , Cromossomos Artificiais Humanos/genética , Cromossomos Artificiais Humanos/metabolismo , Saccharomycetales/genética
3.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37874344

RESUMO

Marine microbes like diatoms make up the base of marine food webs and drive global nutrient cycles. Despite their key roles in ecology, biogeochemistry, and biotechnology, we have limited empirical data on how forces other than adaptation may drive diatom diversification, especially in the absence of environmental change. One key feature of diatom populations is frequent extreme reductions in population size, which can occur both in situ and ex situ as part of bloom-and-bust growth dynamics. This can drive divergence between closely related lineages, even in the absence of environmental differences. Here, we combine experimental evolution and transcriptome landscapes (t-scapes) to reveal repeated evolutionary divergence within several species of diatoms in a constant environment. We show that most of the transcriptional divergence can be captured on a reduced set of axes, and that repeatable evolution can occur along a single major axis of variation defined by core ortholog expression comprising common metabolic pathways. Previous work has associated specific transcriptional changes in gene networks with environmental factors. Here, we find that these same gene networks diverge in the absence of environmental change, suggesting these pathways may be central in generating phenotypic diversity as a result of both selective and random evolutionary forces. If this is the case, these genes and the functions they encode may represent universal axes of variation. Such axes that capture suites of interacting transcriptional changes during diversification improve our understanding of both global patterns in local adaptation and microdiversity, as well as evolutionary forces shaping algal cultivation.


Assuntos
Diatomáceas , Diatomáceas/genética , Diatomáceas/metabolismo , Redes Reguladoras de Genes , Transcriptoma
4.
Artigo em Inglês | MEDLINE | ID: mdl-37788887

RESUMO

One of the greatest threats facing the planet is the continued increase in excess greenhouse gasses, with CO2 being the primary driver due to its rapid increase in only a century. Excess CO2 is exacerbating known climate tipping points that will have cascading local and global effects including loss of biodiversity, global warming, and climate migration. However, global reduction of CO2 emissions is not enough. Carbon dioxide removal (CDR) will also be needed to avoid the catastrophic effects of global warming. Although the drawdown and storage of CO2 occur naturally via the coupling of the silicate and carbonate cycles, they operate over geological timescales (thousands of years). Here, we suggest that microbes can be used to accelerate this process, perhaps by orders of magnitude, while simultaneously producing potentially valuable by-products. This could provide both a sustainable pathway for global drawdown of CO2 and an environmentally benign biosynthesis of materials. We discuss several different approaches, all of which involve enhancing the rate of silicate weathering. We use the silicate mineral olivine as a case study because of its favorable weathering properties, global abundance, and growing interest in CDR applications. Extensive research is needed to determine both the upper limit of the rate of silicate dissolution and its potential to economically scale to draw down significant amounts (Mt/Gt) of CO2 Other industrial processes have successfully cultivated microbial consortia to provide valuable services at scale (e.g., wastewater treatment, anaerobic digestion, fermentation), and we argue that similar economies of scale could be achieved from this research.

5.
Exp Neurol ; 361: 114303, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563835

RESUMO

It has long been accepted that myotonia (muscle stiffness) in patients with muscle channelopathies is due to myotonic discharges (involuntary firing of action potentials). In a previous study, we identified a novel phenomenon in myotonic muscle: development of plateau potentials, transient depolarizations to near -35 mV lasting for seconds to minutes. In the current study we examined whether plateau potentials contribute to myotonia. A recessive genetic model (ClCadr mice) with complete loss of muscle chloride channel (ClC-1) function was used to model severe myotonia congenita with complete loss of ClC-1 function and a pharmacologic model using anthracene-9-carboxylic acid (9 AC) was used to model milder myotonia congenita with incomplete loss of ClC-1 function. Simultaneous measurements of action potentials and myoplasmic Ca2+ from individual muscle fibers were compared to recordings of whole muscle force generation. In ClCadr muscle both myotonia and plateau potentials lasted 10s of seconds to minutes. During plateau potentials lasting 1-2 min, there was a gradual transition from high to low intracellular Ca2+, suggesting a transition in individual fibers from myotonia to flaccid paralysis in severe myotonia congenita. In 9 AC-treated muscles, both myotonia and plateau potentials lasted only a few seconds and Ca2+ remained elevated during the plateau potentials, suggesting plateau potentials contribute to myotonia without causing weakness. We propose, that in myotonic muscle, there is a novel state in which there is contraction in the absence of action potentials. This discovery provides a mechanism to explain reports of patients with myotonia who suffer from electrically silent muscle contraction lasting minutes.


Assuntos
Miotonia Congênita , Miotonia , Camundongos , Animais , Miotonia/genética , Miotonia Congênita/genética , Miotonia Congênita/tratamento farmacológico , Contração Muscular , Potenciais de Ação/fisiologia , Fibras Musculares Esqueléticas , Canais de Cloreto/genética , Modelos Animais de Doenças
6.
BMC Bioinformatics ; 23(1): 419, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224545

RESUMO

BACKGROUND: With the advent of metagenomics, the importance of microorganisms and how their interactions are relevant to ecosystem resilience, sustainability, and human health has become evident. Cataloging and preserving biodiversity is paramount not only for the Earth's natural systems but also for discovering solutions to challenges that we face as a growing civilization. Metagenomics pertains to the in silico study of all microorganisms within an ecological community in situ, however, many software suites recover only prokaryotes and have limited to no support for viruses and eukaryotes. RESULTS: In this study, we introduce the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite developed to recover genomes from all domains. To our knowledge, VEBA is the first end-to-end metagenomics suite that can directly recover, quality assess, and classify prokaryotic, eukaryotic, and viral genomes from metagenomes. VEBA implements a novel iterative binning procedure and hybrid sample-specific/multi-sample framework that yields more genomes than any existing methodology alone. VEBA includes a consensus microeukaryotic database containing proteins from existing databases to optimize microeukaryotic gene modeling and taxonomic classification. VEBA also provides a unique clustering-based dereplication strategy allowing for sample-specific genomes and genes to be directly compared across non-overlapping biological samples. Finally, VEBA is the only pipeline that automates the detection of candidate phyla radiation bacteria and implements the appropriate genome quality assessments. VEBA's capabilities are demonstrated by reanalyzing 3 existing public datasets which recovered a total of 948 MAGs (458 prokaryotic, 8 eukaryotic, and 482 viral) including several uncharacterized organisms and organisms with no public genome representatives. CONCLUSIONS: The VEBA software suite allows for the in silico recovery of microorganisms from all domains of life by integrating cutting edge algorithms in novel ways. VEBA fully integrates both end-to-end and task-specific metagenomic analysis in a modular architecture that minimizes dependencies and maximizes productivity. The contributions of VEBA to the metagenomics community includes seamless end-to-end metagenomics analysis but also provides users with the flexibility to perform specific analytical tasks. VEBA allows for the automation of several metagenomics steps and shows that new information can be recovered from existing datasets.


Assuntos
Archaea , Metagenoma , Archaea/genética , Bactérias/genética , Análise por Conglomerados , Ecossistema , Eucariotos/genética , Genoma Viral , Humanos , Metagenômica/métodos
7.
Proc Natl Acad Sci U S A ; 119(37): e2200014119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067300

RESUMO

Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.


Assuntos
Proteínas Arqueais , Proteínas de Bactérias , Microbiota , Nitrificação , Água do Mar , Archaea/classificação , Archaea/enzimologia , Proteínas Arqueais/análise , Bactérias/classificação , Bactérias/enzimologia , Proteínas de Bactérias/análise , Biodiversidade , Nitrito Redutases/metabolismo , Oceano Pacífico , Proteômica/métodos , Água do Mar/microbiologia
8.
mBio ; 13(3): e0070022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575547

RESUMO

With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3'-amino 3'-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds. IMPORTANCE Drug-resistant Gram-negative bacteria have become the major problem driving the antimicrobial resistance crisis. Searching outside the overmined actinomycetes, we focused on Photorhabdus, gut symbionts of enthomopathogenic nematodes that carry up to 40 biosynthetic gene clusters coding for secondary metabolites. Most of these are silent and do not express in vitro. To gain access to silent operons, we first fractionated supernatant from Photorhabdus and then tested 200-fold concentrated material for activity. This resulted in the isolation of a novel antimicrobial, 3'-amino 3'-deoxyguanosine (ADG), active against E. coli. ADG is an analog of guanosine and is converted into an active ADG-TP in the cell. ADG-TP inhibits transcription and probably numerous other GTP-dependent targets, such as FtsZ. Natural product prodrugs have been uncommon; discovery of ADG broadens our knowledge of this type of antibiotic.


Assuntos
Produtos Biológicos , Proteínas de Escherichia coli , Nematoides , Photorhabdus , Pró-Fármacos , Xenorhabdus , Animais , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Produtos Biológicos/metabolismo , Desoxiguanosina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas , Guanosina/metabolismo , Guanosina Trifosfato/metabolismo , Nematoides/microbiologia , Óperon , Photorhabdus/genética , Photorhabdus/metabolismo , Pró-Fármacos/metabolismo , Xenorhabdus/genética
9.
Elife ; 112022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985413

RESUMO

Excitation-contraction coupling (ECC) is the process by which electrical excitation of muscle is converted into force generation. Depolarization of skeletal muscle resting potential contributes to failure of ECC in diseases such as periodic paralysis, intensive care unit acquired weakness and possibly fatigue of muscle during vigorous exercise. When extracellular K+ is raised to depolarize the resting potential, failure of ECC occurs suddenly, over a narrow range of resting potentials. Simultaneous imaging of Ca2+ transients and recording of action potentials (APs) demonstrated failure to generate Ca2+ transients when APs peaked at potentials more negative than -30mV. An AP property that closely correlated with failure of the Ca2+ transient was the integral of AP voltage with respect to time. Simultaneous recording of Ca2+ transients and APs with electrodes separated by 1.6mm revealed AP conduction fails when APs peak below -21mV. We hypothesize propagation of APs and generation of Ca2+ transients are governed by distinct AP properties: AP conduction is governed by AP peak, whereas Ca2+ release from the sarcoplasmic reticulum is governed by AP integral. The reason distinct AP properties may govern distinct steps of ECC is the kinetics of the ion channels involved. Na channels, which govern propagation, have rapid kinetics and are insensitive to AP width (and thus AP integral) whereas Ca2+ release is governed by gating charge movement of Cav1.1 channels, which have slower kinetics such that Ca2+ release is sensitive to AP integral. The quantitative relationships established between resting potential, AP properties, AP conduction and Ca2+ transients provide the foundation for future studies of failure of ECC induced by depolarization of the resting potential.


Assuntos
Potenciais de Ação/fisiologia , Acoplamento Excitação-Contração , Potenciais da Membrana , Músculo Esquelético/fisiologia , Animais , Camundongos
10.
PNAS Nexus ; 1(5): pgac239, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712365

RESUMO

Dental caries is a microbial disease and the most common chronic health condition, affecting nearly 3.5 billion people worldwide. In this study, we used a multiomics approach to characterize the supragingival plaque microbiome of 91 Australian children, generating 658 bacterial and 189 viral metagenome-assembled genomes with transcriptional profiling and gene-expression network analysis. We developed a reproducible pipeline for clustering sample-specific genomes to integrate metagenomics and metatranscriptomics analyses regardless of biosample overlap. We introduce novel feature engineering and compositionally-aware ensemble network frameworks while demonstrating their utility for investigating regime shifts associated with caries dysbiosis. These methods can be applied when differential abundance modeling does not capture statistical enrichments or the results from such analysis are not adequate for providing deeper insight into disease. We identified which organisms and metabolic pathways were central in a coexpression network as well as how these networks were rewired between caries and caries-free phenotypes. Our findings provide evidence of a core bacterial microbiome that was transcriptionally active in the supragingival plaque of all participants regardless of phenotype, but also show highly diagnostic changes in the ways that organisms interact. Specifically, many organisms exhibit high connectedness with central carbon metabolism to Cardiobacterium and this shift serves a bridge between phenotypes. Our evidence supports the hypothesis that caries is a multifactorial ecological disease.

11.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904400

RESUMO

In addition to the hallmark muscle stiffness, patients with recessive myotonia congenita (Becker disease) experience debilitating bouts of transient weakness that remain poorly understood despite years of study. We performed intracellular recordings from muscle of both genetic and pharmacologic mouse models of Becker disease to identify the mechanism underlying transient weakness. Our recordings reveal transient depolarizations (plateau potentials) of the membrane potential to -25 to -35 mV in the genetic and pharmacologic models of Becker disease. Both Na+ and Ca2+ currents contribute to plateau potentials. Na+ persistent inward current (NaPIC) through NaV1.4 channels is the key trigger of plateau potentials and current through CaV1.1 Ca2+ channels contributes to the duration of the plateau. Inhibiting NaPIC with ranolazine prevents the development of plateau potentials and eliminates transient weakness in vivo. These data suggest that targeting NaPIC may be an effective treatment to prevent transient weakness in myotonia congenita.


Myotonia is a neuromuscular condition that causes problems with the relaxation of muscles following voluntary movements. One type of myotonia is Becker disease, also called recessive myotonia congenita. This is a genetic condition that causes muscle stiffness as a result of involuntary muscle activity. Patients may also suffer transient weakness for a few seconds or as long as several minutes after initiating a movement. The cause of these bouts of temporary weakness is still unclear, but there are hints that it could be linked to the muscle losing its excitability, the ability to respond to the stimuli that make it contract. However, this is at odds with findings that show that muscles in Becker disease are hyperexcitable. Muscle excitability depends on the presence of different concentrations of charged ions (positively charged sodium, calcium and potassium ions and negatively charged chloride ions) inside and outside of each muscle cells. These different concentrations of ions create an electric potential across the cell membrane, also called the 'membrane potential'. When a muscle cell gets stimulated, proteins on the cell membrane known as ion channels open. This allows the flow of ions between the inside and the outside of the cell, which causes an electrical current that triggers muscle contraction. To better understand the causes behind this muscle weakness, Myers et al. used mice that had either been genetically manipulated or given drugs to mimic Becker disease. By measuring both muscle force and the electrical currents that drive contraction, Myers et al. found that the mechanism underlying post-movement weakness involved a transient change in the concentrations of positively charged ions inside and outside the cells. Further experiments showed that proteins that regulate the passage of both sodium and calcium in and out of the cell ­ called sodium and calcium channels ­ contributed to this change in concentration. In addition, Myers et al. discovered that using a drug called ranolazine to stop sodium ions from entering the cell eliminated transient weakness in live mice. These findings suggest that in Becker disease, muscles cycle rapidly between being hyperexcited or not able to be excited, and that targeting the flow of sodium ions into the cell could be an effective treatment to prevent transient weakness in myotonia congenita. This study paves the way towards the development of new therapies to treat Becker disease as well as other muscle ion channel diseases with transient weakness such as periodic paralysis.


Assuntos
Potenciais da Membrana/fisiologia , Miotonia Congênita/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Miotonia Congênita/diagnóstico , Miotonia Congênita/genética , Sódio/fisiologia
12.
PLoS Comput Biol ; 17(3): e1008857, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780444

RESUMO

To better combat the expansion of antibiotic resistance in pathogens, new compounds, particularly those with novel mechanisms-of-action [MOA], represent a major research priority in biomedical science. However, rediscovery of known antibiotics demonstrates a need for approaches that accurately identify potential novelty with higher throughput and reduced labor. Here we describe an explainable artificial intelligence classification methodology that emphasizes prediction performance and human interpretability by using a Hierarchical Ensemble of Classifiers model optimized with a novel feature selection algorithm called Clairvoyance; collectively referred to as a CoHEC model. We evaluated our methods using whole transcriptome responses from Escherichia coli challenged with 41 known antibiotics and 9 crude extracts while depositing 122 transcriptomes unique to this study. Our CoHEC model can properly predict the primary MOA of previously unobserved compounds in both purified forms and crude extracts at an accuracy above 99%, while also correctly identifying darobactin, a newly discovered antibiotic, as having a novel MOA. In addition, we deploy our methods on a recent E. coli transcriptomics dataset from a different strain and a Mycobacterium smegmatis metabolomics timeseries dataset showcasing exceptionally high performance; improving upon the performance metrics of the original publications. We not only provide insight into the biological interpretation of our model but also that the concept of MOA is a non-discrete heuristic with diverse effects for different compounds within the same MOA, suggesting substantial antibiotic diversity awaiting discovery within existing MOA.


Assuntos
Anti-Infecciosos/farmacologia , Inteligência Artificial , Farmacorresistência Bacteriana/genética , Metaboloma/genética , Fenilpropionatos/farmacologia , Transcriptoma/genética , Algoritmos , Biologia Computacional/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Metaboloma/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/genética , Transcriptoma/efeitos dos fármacos
13.
iScience ; 24(2): 102114, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33659879

RESUMO

Monitoring microbial communities aboard the International Space Station (ISS) is essential to maintaining astronaut health and the integrity of life-support systems. Using assembled genomes of ISS-derived microbial isolates as references, recruiting metagenomic reads from an astronaut's nasal microbiome revealed no recruitment to a Staphylococcus aureus isolate from samples before launch, yet systematic recruitment across the genome when sampled after 3 months aboard the ISS, with a median percent identity of 100%. This suggests that either a highly similar S. aureus population colonized the astronaut's nasal microbiome while the astronaut was aboard the ISS or that it may have been below detection before spaceflight, instead supporting a shift in community composition. This work highlights the value in generating genomic libraries of microbes from built-environments such as the ISS and demonstrates one way such data can be integrated with metagenomics to facilitate the tracking and monitoring of astronaut microbiomes and health.

14.
Nat Microbiol ; 6(2): 173-186, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398100

RESUMO

Marine microeukaryotes play a fundamental role in biogeochemical cycling through the transfer of energy to higher trophic levels and vertical carbon transport. Despite their global importance, microeukaryote physiology, nutrient metabolism and contributions to carbon cycling across offshore ecosystems are poorly characterized. Here, we observed the prevalence of dinoflagellates along a 4,600-km meridional transect extending across the central Pacific Ocean, where oligotrophic gyres meet equatorial upwelling waters rich in macronutrients yet low in dissolved iron. A combined multi-omics and geochemical analysis provided a window into dinoflagellate metabolism across the transect, indicating a continuous taxonomic dinoflagellate community that shifted its functional transcriptome and proteome as it extended from the euphotic to the mesopelagic zone. In euphotic waters, multi-omics data suggested that a combination of trophic modes were utilized, while mesopelagic metabolism was marked by cytoskeletal investments and nutrient recycling. Rearrangement in nutrient metabolism was evident in response to variable nitrogen and iron regimes across the gradient, with no associated change in community assemblage. Total dinoflagellate proteins scaled with particulate carbon export, with both elevated in equatorial waters, suggesting a link between dinoflagellate abundance and total carbon flux. Dinoflagellates employ numerous metabolic strategies that enable broad occupation of central Pacific ecosystems and play a dual role in carbon transformation through both photosynthetic fixation in the euphotic zone and remineralization in the mesopelagic zone.


Assuntos
Ciclo do Carbono , Dinoflagelados/metabolismo , Água do Mar/parasitologia , Dinoflagelados/classificação , Oceano Pacífico , Filogenia , Proteínas de Protozoários/metabolismo
15.
Sci Robot ; 5(48)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239321

RESUMO

Vast and diverse microbial communities exist within the ocean. To better understand the global influence of these microorganisms on Earth's climate, we developed a robot capable of sampling dissolved and particulate seawater biochemistry across ocean basins while still capturing the fine-scale biogeochemical processes therein. Carbon and other nutrients are acquired and released by marine microorganisms as they build and break down organic matter. The scale of the ocean makes these processes globally relevant and, at the same time, challenging to fully characterize. Microbial community composition and ocean biochemistry vary across multiple physical scales up to that of the ocean basins. Other autonomous underwater vehicles are optimized for moving continuously and, primarily, horizontally through the ocean. In contrast, Clio, the robot that we describe, is designed to efficiently and precisely move vertically through the ocean, drift laterally in a Lagrangian manner to better observe water masses, and integrate with research vessel operations to map large horizontal scales to a depth of 6000 meters. We present results that show how Clio conducts high-resolution sensor surveys and sample return missions, including a mapping of 1144 kilometers of the Sargasso Sea to a depth of 1000 meters. We further show how the samples obtain filtered biomass from seawater that enable genomic and proteomic measurements not possible through in situ sensing. These results demonstrate a robotic oceanography approach for global-scale surveys of ocean biochemistry.

17.
Environ Microbiol ; 22(8): 3020-3038, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436334

RESUMO

Next-generation sequencing technologies have generated, and continue to produce, an increasingly large corpus of biological data. The data generated are inherently compositional as they convey only relative information dependent upon the capacity of the instrument, experimental design and technical bias. There is considerable information to be gained through network analysis by studying the interactions between components within a system. Network theory methods using compositional data are powerful approaches for quantifying relationships between biological components and their relevance to phenotype, environmental conditions or other external variables. However, many of the statistical assumptions used for network analysis are not designed for compositional data and can bias downstream results. In this mini-review, we illustrate the utility of network theory in biological systems and investigate modern techniques while introducing researchers to frameworks for implementation. We overview (1) compositional data analysis, (2) data transformations and (3) network theory along with insight on a battery of network types including static-, temporal-, sample-specific- and differential-networks. The intention of this mini-review is not to provide a comprehensive overview of network methods, rather to introduce microbiology researchers to (semi)-unsupervised data-driven approaches for inferring latent structures that may give insight into biological phenomena or abstract mechanics of complex systems.


Assuntos
Biologia/métodos , Pesquisa Biomédica/métodos , Análise de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Web Semântica
18.
Ann Neurol ; 88(2): 297-308, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32418267

RESUMO

OBJECTIVE: Myotonia is caused by involuntary firing of skeletal muscle action potentials and causes debilitating stiffness. Current treatments are insufficiently efficacious and associated with side effects. Myotonia can be triggered by voluntary movement (electrically induced myotonia) or percussion (mechanically induced myotonia). Whether distinct molecular mechanisms underlie these triggers is unknown. Our goal was to identify ion channels involved in mechanically induced myotonia and to evaluate block of the channels involved as a novel approach to therapy. METHODS: We developed a novel system to enable study of mechanically induced myotonia using both genetic and pharmacologic mouse models of myotonia congenita. We extended ex vivo studies of excitability to in vivo studies of muscle stiffness. RESULTS: As previous work suggests activation of transient receptor potential vanilloid 4 (TRPV4) channels by mechanical stimuli in muscle, we examined the role of this cation channel. Mechanically induced myotonia was markedly suppressed in TRPV4-null muscles and in muscles treated with TRPV4 small molecule antagonists. The suppression of mechanically induced myotonia occurred without altering intrinsic muscle excitability, such that myotonia triggered by firing of action potentials (electrically induced myotonia) was unaffected. When injected intraperitoneally, TRPV4 antagonists lessened the severity of myotonia in vivo by approximately 80%. INTERPRETATION: These data demonstrate that there are distinct molecular mechanisms triggering electrically induced and mechanically induced myotonia. Our data indicates that activation of TRPV4 during muscle contraction plays an important role in triggering myotonia in vivo. Elimination of mechanically induced myotonia by TRPV4 inhibition offers a new approach to treating myotonia. ANN NEUROL 2020;88:297-308.


Assuntos
Contração Isométrica/fisiologia , Morfolinas/farmacologia , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Pirróis/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Animais , Antracenos/farmacologia , Contração Isométrica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Miotonia Congênita/prevenção & controle , Pirróis/uso terapêutico
19.
Nat Commun ; 11(1): 2537, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439901

RESUMO

Infection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation. The effects of influenza infection on the upper respiratory tract (URT) microbiome are largely unknown. Here, we report a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets. Uninfected human patients and ferret URT microbiomes have stable healthy ecostate communities both within and between individuals. In contrast, infected patients and ferrets exhibit large changes in bacterial community composition over time and between individuals. The unhealthy ecostates of infected individuals progress towards the healthy ecostate, coinciding with viral clearance and recovery. Pseudomonadales associate statistically with the disturbed microbiomes of infected individuals. The dynamic and resilient microbiome during influenza virus infection in multiple hosts provides a compelling rationale for the maintenance of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated bacterial co-infections.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/microbiologia , Microbiota , Nasofaringe/microbiologia , Adolescente , Adulto , Idoso , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Criança , Pré-Escolar , Disbiose/microbiologia , Disbiose/virologia , Feminino , Furões , Humanos , Lactente , Influenza Humana/virologia , Estudos Longitudinais , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Nasofaringe/virologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/virologia , Adulto Jovem
20.
Synth Biol (Oxf) ; 5(1): ysaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161816

RESUMO

Standardized type IIS DNA assembly methods are becoming essential for biological engineering and research. These methods are becoming widespread and more accessible due to the proposition of a 'common syntax' that enables higher interoperability between DNA libraries. Currently, Golden Gate (GG)-based assembly systems, originally implemented in host-specific vectors, are being made compatible with multiple organisms. We have recently developed the GG-based Loop assembly system for plants, which uses a small library and an intuitive strategy for hierarchical fabrication of large DNA constructs (>30 kb). Here, we describe 'universal Loop' (uLoop) assembly, a system based on Loop assembly for use in potentially any organism of choice. This design permits the use of a compact number of plasmids (two sets of four odd and even vectors), which are utilized repeatedly in alternating steps. The elements required for transformation/maintenance in target organisms are also assembled as standardized parts, enabling customization of host-specific plasmids. Decoupling of the Loop assembly logic from the host-specific propagation elements enables universal DNA assembly that retains high efficiency regardless of the final host. As a proof-of-concept, we show the engineering of multigene expression vectors in diatoms, yeast, plants and bacteria. These resources are available through the OpenMTA for unrestricted sharing and open access.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...